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Aerospace Industries Association workshop on will have a dramatic impact on my research.

"Research Advances Required for Real-Time
Software Systems in the 90's". I was one of the One of the students is performing an empirical

few invited participants from academia. analysis of novel resource allocation algorithms
for real-time operating systems. Another is

I accepted the position as Chairman of the implementingadata-flow, protocolengine that is

Seventh IEEE Workshop on Real-Time Operat- an improvement on Larry Peterson's work at

ing Systems and Software, which will be held in Arizona on high-performance protocol imple-

Charlottesville on May 10, 1990. I will also be mentations. Another is designing and imple-

participating in the IEEE P1151 standards effort menting fault-tolerant multicast protocols for the

for Modula-2. I also participated in a workshop distributed version of Phoenix. Another is run-

held at the Virginia Center for Innovative Tech- ning experiments on real-time scheduling algo-

nology for state researchers in the real-time area. rithms. Finally, another student is experimenting

Furthermore, the Department has made it to the with optimal locking schemes for multiprocessor

site visit stage in this year's NSF CISE competi- operating system implementations.

tion. The Phoenix operating system, running in
the StarLite environment, was one of the two For the real-time prototyping environment,

demonstrations that the department chose to we implemented a dynamic filter attachment

* impress the visitors. They were very impressed. option for the debugger so that data could be
displayed and manipulated through application-

Of the ten new Ph.D. students in this year's dependent views. We are also working on a

entering graduate class, five are working with me translator that will produce native-code versions

on the Phoenix project. The group has the best of our library's object modules. Once the trans-

* background and intellect of any of the students lator is complete,the interpreter will be modified

that I have worked with at Virginia. I have also to load native-code modules if they are present.
Measurements indicate that we should be able to

R. P. Cook run at close to machine speeds while maintaining

Department of Computer Science compatibility with the environment's tool set.
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The StarLite Operating System

Robert P. Cook*
cook@cs.virginia.edu

Department of Computer Science
University of Virginia

0 Charlottesville, VA 22903
(804) 979-9943

* 1.0 Introduction of the technology issues being explored as part of

The StarLite project [ 1,2,3] has four research the StarLite project.

components in the areas of prototyping, operat- 2.0 Operating System Interfaces
ing systems, database, and computer network
technology. The prototyping environment, In this Section, we describe the interface
which executes on Sun workstations, supports requirements that we feel would be most appro-
the development and execution of software for priate for a mission-critical operating system
uni- or multi-processors, as well as distributed solution. Interfaces are important because they
systems. can be standardized and because they are de-

signed to outlive implementations and machine
* Figure 1 illustrates the use of the prototyping architectures.

environment during a test session for the StarLiteopertin sytem.Thefigre ilusrats ~It is now widely accepted that the use of a pro-operating system. The figure illustrates our

proprietary UNIX* implementation "booting up" cedural interface, such as the C library for UNIX,
on a six-node virtual network. Once the virtual is the most advantageous method for presenting

* network has booted, the system designer can an operating system's functionality to an end
execute test programs, collect statistics, orexam- user. Such an interface can be machine and
ine the system state using the builtin debugger, language invariant. These are desirable proper-
which is illustrated in Figure 2. We have invested ties given the diversity of hardware/software
a good deal of effort in building the prototyping used by today's defense contractors.

* system to create what we feel is the best possible There are two design options to choose from
research environment, as the basis foran interface standard: flat and lay-

The purpose of this paper is to describe our ered. An operating system with a flat interface,
approachtodesigninganewoperatingsystemfor such as UNIX, is essentially closed; that is none
mission-critical computing and to review some of the interfaces used in the implementation can

* be accessed. Flat interfaces are inflexible and

*This work is supported by by ONR under con- typically trade performance and control for

tract N00014-86-K0245 and ARO under con- generality.

tract DAAL03-87-K0090. A layered interface specification, such as the
* *UNIX is a registered trademark of AT&T Bell ISO OSldefinition forcomputer networks, over-

Laboratories. comes the deficiencies of the traditional, flat

* 4
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operating system interface designs by allowing features, which can affect interfaces and imple-
the application engineer to choose an interface mentations at a number of layers. Even if the re-
layer that most closely fits the problem to be quirement is removed at a higher layer, there may
solved. For example, if UNIX were a layered be unused procedures and data structures at lower
design, it would be possible for a database system layers that affect performance. Both problems
to manipulate the operating system's buffercache are being solved by improving compiler technol-
in a manner that has long been requested by ogy.
implementors [4]. 3.0 Interface Implementations

Access to low-level interfaces can address the
performance requirements of mission-critical Most operating system implementations are
software. Another advantage of a layered design closed; that is, the user cannot and probably
is that layers can be omitted to save space. For should not modify them. The StarLite operating
example, if an application does not use files, the system is designed to support an arbitrary num-

0 file system could be omitted. It is also possible ber of different, validated implementations for a
to implement layers in hardware to improve given interface. As a result, the operating system
performance. as a whole follows an open systems architecture

that can be tuned to meet application require-
The StarLite operating system is based on a ments. Examples of different implementation

layered design with standard interfaces. Two of options for the same interface specification in-
the research issues are how to partition the layers clude CPU and disk scheduling algorithms or
and how to define the interfaces at each layer. hierarchical versus flat-file name interpretation.

To experiment with different options, we The long-term goal of the StarLite project is to
designed and implemented a UNIX-compatible create an operating system generator that could
operating system according to the layering prin- automatically select implementations from a
ciples defined by ISO[51. The StarLite UNIX is module library based on specified application
proprietary in that it is not based upon nor does it requirements and a given target architecture. The
contain any code from other UNIX implementa- first step toward achieving this goal is to create a
tions. We have rewritten the system several times library of implementation modules suitable for
to try different layering and implementation mission critical applications. The current phase
strategies. of the StarLite project is concerned with creating

We have found interface specification to be a such a library.
more demanding task than doing the implemen- 4.0 A Software Backplane
tation. In other words, writing a monolithic piece
of code to solve a problem is much easier than One of the prerequisites for experimenting
creating a layered design in which the layers are with a library of operating system components is
intended to form functionally complete and use- having the ability to add and delete modules or
ful subsets. services. Also, we felt that some composition

We have found two other problems with a mechanism would be necessary to achieve the

layered design that we are addressing as part of goal of creating an operating system generator.

our research. The first problem is the overhead This section discusses the two components of
of procedure calls through multiple layers of the StarLite operating system that make up what
software. The second problem results from we call a software backplane. The two compo-
application requirements, such as protection nents are a composition strategy for process

6
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objects and a dynamic binding option for system efficiency as the traditional UNIX process struc-
services. The first component is used to create ture. For example, "p^.nextTimeOut" would
the internal structure of an operating system; the retrieve a field from the TimingInfo record.
second is used to connect various services to that It is also possible to associate managers with
underlying structure. properties. When a process object is closed, the

In a traditional operating system implementa- managers are notified one at a time so that the
tion, such as UNIX, the properties of a process are individual fields may be closed. Forexample, the
stored as single record. Any changes in one exit system call's implementation is unaware that
module o UNIX require a change in the ".h" file there is a file system associated with a process.
for the shared record. The result is that all the When the manager of the file-system property is
modules in the system must then be recompiled. invoked as the result of a process exit, it does its

The StarLite composition mechanism elimi- own cleanup by closing all open files.

nates unnecessary recompilations by binding Managers can also be used to monitor the
properties to processes dynamically. The actions on fields for debugging purposes. This is
method is object based but does not support somewhat equivalent to the probe points used on
inheritance. Thus, the support code is small and hardware backplanes.
fast. The second component of StarLite's software

In StarLite, there is only one class of object, a backplane design is its user services interface.
process. Each process object can be composedof The operating system acts as an agent between
a limited number of properties that can be con- user interfaces and modules that provide serv-
nected to it in any order and at any time. ices. The connection between the two is by

When the operating system boots up, each means of messages in which the operations re-

module has been statically linked to the code of quested can be open, share, read, write, rcon-
the modules that it depends on. However, each trol, wcontrol, and close. However, the inter-module dynamically connects its data type to the pretation of the message is strictly up to theservice modules. Thus, the system implementor
process object using a low-level creat system can create an arbitrary number of user interfaces
call. For example, 'creat(">process/Timing- and an arbitrary number of userentacs
Info")' would append a set of timing properties and itrar em t
of a certain size to every process object. The those interfaces.

property fields are created only once when the For example, assume that a user opens "/dev/
system boots up. Also at boot time, the modules pipe". The result is that an action procedure is
that use a particular propertyretrieve the location dynamically associated with the 10 field in the

* of its fields with an open system call, such as user's process object. Next, an open message is
Iopen(">process/Timinglnfo")'. Again, thisonly constructed and sent to the Pipe module. The
occurs once. Note that the net effect is the same return value, which represents two file descriptor
as being able to declare a RECORD structure tags for the read/write ends of the pipe, is sent to
with the field location bound at runtime. the user's process as a result. The applications

In order to use the TimingInfo property, a engineercan choose from a variety of pipe imple-
mentations by using different names. Note that

module must execute a read system call to re- dnaic binding n ee nt nail d e tat

trieve a pointer to or copy of the desired field, dynamic binding need not entail demand load-ing; the implementation modules can be loaded
depending on the semantics. The contents of the with the boot image if desired.

* field can then be manipulated with the same

0 7



The user services interface has one other dictate the use of a standard file system for all
aspect, the notion of context, that we feel is im- critical computing. This may not be feasible so
portantformissioncriticalcomputing. Acontext we have investigated the lessergoal of standard-
defines the mechanism by which names are inter- izing file manipulation, indexing, and disk space
preted. In the StarLite implementation, all name allocation. Each vendor's operating system is
resolution is accomplished by wessages sent to then presented with a standard interface to a vol-
context services by means of action procedure ume.
calls. At the current time, the VSF standard is de-

As a result, any path name syntax and any signed to maintain the integrity of a volume's bit
effect can be realized. For example, the dynamic map, file descriptors and index blocks. It is up to
service binding is implemented by a context each operating system to maintain the consis-
module. Contexts can also be used for perform- tency of other information, which may be arbi-
ance enhancement. For instance, the standard trary. For example, UNIX information, such as
UNIX implementation of path name resolution access times or an owner's id, could be manipu-
can result in lengthy and unpredictable disk latedfreely through the interface. Eachoperating
accesses. Critical read-only file names could be system is free to add whatever information that it
resolved by a context so that their index and data wants to either file descriptors or index blocks.
blocks were locked in memory thereby achieving This flexibility is achieved by partitioning the
unit access times. descriptor and index blocks into two parts. One

We feel that adaptability and extensibility are part can be manipulated arbitrarily by the host
desirable properties for operating systems to operating system through a protected interface.
support mission critical computing. The tradi- The second part can only be used in certain
tional methods of changing interfaces as new restricted, but always safe, ways. The integrity of
application and technological requirements arise the protected information, which contains disk
are unacceptable. StarLite achieves flexibility block addresses, guarantees the integrity and
without sacrificing performance. recoverability of a volume's data.

5.0 Technology Issues The protected part of an index block or file
* descriptor contains index slots. Each index slot

In this section, wediscuss someof theStarLite can identify an extent, which can be as small as
project's research in operating system implemen- one block, or another index block. For high
tation techniques. The areas discussed include a performance applications, each file can be imple-
Volume Storage Format standard (VSF), syn- mented as a single extent consisting of a file
chronization, and resource allocation, descriptor followed by the data. This organiza-

5.1 A VSF standard tion avoids the overhead associated with the
traditional UNIX implementation.

We feel that one of the key aspects of a support
stategy for mission critical computing is a stan- ledes surs earatinf multim
dard format for disk volumes. The advantages levelindex structures. Sinceanoperating systemare that this standard could be implemented in can store into the unprotected part of an index
hardware for high-performance and that files block, it is possible to efficiently implementstored on any volume culd be accessed by any keyed access methods, such as B-trees, that dooperating system not "fit" into the UNIX filesystem model. Al-though we have not tried it yet, it is also possible

* One way to achieve this goal would be to to create indices that span multiple files.

I8



The proposed standard is flexible, supports tors are used for critical sections with blocking
volume interchange, and can be used to achieve conditions; and Blocking operations are used for
predictable, high-performance operation. Pro- the cases in which a delayed thread can be
prietary file systems can still be defined, but low- swapped out. For swapped, blocked threads, the
level access to data across systems is guaranteed. unblock operation is reflected as a state change

that defers the wakeup signal until the process is
5.2 Synchronization swapped in and scheduled to run.

The StarLite operating system is imple- In addition to experimenting with fine-
* mented using the hierarchy of synchronization grained locking and synchronization techniques

abstractions listed in Figure 3. Operators lower for operating system construction, we are also
in the hierarchy have higher performance but investigating the enhancements necessary to
have undesirable side-effects associated with support real-time. Two areas of interest are
their use. Disabling interrupts to protect critical priority inheritance schemes and an integrated

* sections is fast (usually one machine instruction) view of criticality.
but its indiscriminate use can increase interrupt
latency times, which in turn can affect critical 5.3 Resource allocation
event response times. The technique is also
inappropriate for multiprocessors where dis- Management of resources is one of the most

* abling interrupts on one processor has no effect difficult problems to solve in order to produce a
on the execution of the others. The use of full-function UNIX operating system that is ca-
DISABLE in StarLite is restricted to two stan- pable of providing hard, real-time guarantees.
dard modules plus any device drivers that imple- The problem occurs when a low-priority
ment device synchronous operations. process holds a resource requested by a high-

As a result, StarLite minimizes interrupt la- priority process. If the resource cannot be

tency. Furthermore, the fine granularity of lock- preempted or released quickly enough, the high-
ing supports kernel preemption as well as simul- priority process can miss its deadline. The sec-taneous system or 10 operations, ond part of the real-time guarantee problem is tomake system timings predictable in the absence
Synchronization Level of resource contention.

Operation The current StarLite implementation attempts
DISABLE/RESTORE I to guarantee that the highest-priority process
Spin Locks I executes in an interference-free manner as long

o 2as its resources are disjoint from other processes.
Semaphores 2For example, disk writes would circumvent disk
Monitors scheduling and would supercede other requests.

Blocking 4 Our approach to the resource contention prob-
lem is based on priority-ordered avoidance[6].
This technique requires that tasks with "hard"

Figure 3. Synchronization Operations deadlines submit claims describing future ac-
tions and timing requirements. The system then

At the higher layers of the StarLite implemen- guarantees that the deadline will be met as long
tation, Semaphores are used in protect critical as the task does not exceed its computation and
sections that consist of straight-line code; Moni- resource limits and neither the hardware nor
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Abstract

Laboratories are a prerequisite to all scientific
investigation. The ability to quickly create experiments amplifies
a scientist's intellectual ability. For education, students
experiment to learn and to gain experience. Ideally, a laboratory
helps a student visualize a problem domain, such as concurrent or
distributed systems. Eventually, the students learn to reason
about a problem domain abstractly, but typically the experience
must come first.

1.0 Introduction
Software support for distributed programming has lagged far

behind hardware development because of the complexity of the area
and the lack of experimentation. In the past, to experiment with
software for distributed or multiprocessor systems, a systems
researcher had to purchase multiple CPUs and network interfaces.
Such an investment is impractical for many people. Furthermore,
even to those with network access, tools for conducting research
on software systems for parallel and distributed system are non-
existent. Now, with the StarLite environment, only a single
computer is required.

StarLite achieves this by isolating the machine-dependent
portions of a software system using modular programming techniques
to provide machine-independent interfaces to simulate the behavior
of the target hardware. Each device in the StarLite environment
is presented to the user as an abstract data type. For instance,
a Modula-2 definition module is used to represent the test
software's view of a machine model, while a Modula-2 implementation
module does the emulation of the characteristics of physical
machines.

* The StarLite environment currently supports four research
areas: programming environments, operating systems, database, and
computer network technology. The environment includes a Modula-
2 compiler, an interpreter, a window package, a viewer, and an
optional simulation package. The compiler and interpreter are
implemented in C for portability. The rest of the software is in

• Modula-2. The system currently runs on SUN workstations and PCs.
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We are currently teaching a distributed operating systems
course that uses StarLite. The course is based on domain analysis
and interface design as the foundation for an investigation of
implementation options. It is open to upper level undergraduate
and graduate students. The course load depends on each student's
interest and background. The basis of study is a UNIX variant,
Phoenix, that we are developing using StarLite. Since the C code
for the compiler and interpreter are not relevant to the course,
only the StarLite components written in Modula-2 are presented to
the class.

We emphasize the following general themes throughout the
course:

o Selection and utilization of appropriate tools
o Modular decomposition
o Software reuse
o Layered interfaces
o Open architecture

and the general requirements are as follows:

o Study problems of software development.
o Construct parallel and distributed programs by individual

effort using StarLite's concurrent and distributed
programming kernels.

o Construct a small-scale distributed operating system and
use StarLite tools to debug the system and to analyze
the performance of the program.

o Present the project. This includes documentation and
evaluation.

2.0 Approaches and Tools

This section discusses our pedagogical approach and the tools
used in the course. The descriptions are divided into the
following four parts:

1. Methodology: Operating system design philosophies are
described.

2. Programming and Tools: This part described the programming
exercises that students do and the StarLite tools.

3. Observation: Some observations from past experiments are
presented.

4. Examples: Some examples of the use of StarLite for multi-
processor and distributed systems are presented.

12



2.1 Methodology

In addition to various topics on Operating Systems, basic
problems and concepts of software development are introduced. Also,
operating System design philosophies and the StarLite tools are
discussed.

The students are normally given questions before class for
discussion. Typical questions include: How many ways are there
to implement an abstract data type? How often do the students code
the same algorithms for different applications? How can object-
based programming paradigms affect operating system design? These
questions will eventually lead to a discussion of techniques for
modular decomposition with an emphasis on software reuse. Examples
are chosen from paging, resource allocation, and file systems
design.

2.1.1 Modular decomposition and software reuse

The current problems in software education come from many
sources. First, of the three kinds of abstractions-- procedural,
control, and data abstractions-- only procedural abstraction is
supported well by conventional languages[l] which, unfortunately,
still dominate most of our educational environments. Secondly,
our pedagogical approaches have long been focused on problems of
implementations rather than problems of specification, while the
later often turn out to be more fundamental in the long run.
Finally, even if specification is stressed, operational
specifications(2] rather than abstract specifications are still the
major themes of many software design courses. Thus, the common
dilemma of higher-level software courses is that the students
almost always end up decomposing the program instead of the
problem. Therefore, for every application and problem, we
challenge the students to construct interfaces that could
potentially last forever rather than writing programs just to solve
the problem of the day.

2.1.2 Layered interfaces

Generally there are two design options to choose from as the
basis for an interface standard: flat and layered. A system with
a flat interface, such as UNIX operating system, is essentially
closed; that is none of the interfaces used in the implementation
can be accessed. Flat interfaces are inflexible and typically
trade performance and control for generality.

A layered interface specification, such as the ISO OSI[3]
definition for computer networks, overcomes the deficiencies of the
traditional, flat operating system interface designs by allowing
the application engineer to choose an interface layer that most
closely fits the problem to be solved.
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Another advantage of a layered design is that layers can be
omitted to save space. For example, if an application does not use
files, the file system could be omitted. It is also possible to
implement layers in hardware to improve performance.

More importantly, by using the layered approach, the design
and implementation of the system is simplified. As a result, clean
and lucid user interfaces are easier to construct, and the system
is much more amenable to investigation and experimentation.

2.1.3 Open architecture

StarLite is designed to support an arbitrary number of
different, validated implementations for a given interface. As a
result, the system as a whole is designed as an open systems
architecture that can be tuned to meet application requirements.
Examples of different implementation options that can be used with
the same interface specification include CPU and disk scheduling
algorithms or hierarchical versus flat-file name interpretation.

The long-term goal of the StarLite project is to create a
system generator that could automatically select implementations
from a module library based on specified application requirements
and a given target architecture. The first step toward achieving
this goal is to create a library of implementation modules suitable
for mission critical applications. The orientation of the class
is concerned with creating such a library.

2.2 Programming and Tools

We believe that the fundamental techniques used to design
software for uni-processor and multi-processor machines are
basically the same. We also believe that a fundamental
understanding of concurrent programming concepts is essential to
constructing a correct and efficient program. Each student,
therefore, is required to construct some parallel and distributed
programs using the StarLite concurrent and distributed programming
kernels. The implementations of coroutine and process abstractions
as well as various synchronization and interprocess communication
models[4] are studied in great detail.

Students are also required to experiment with StarLite tools
such as the Viewer, and Profiler. The StarLite Viewer subsumes the
functionality of a traditional debugger, but is quite a bit more.
First, the Viewer allows the user to explore, monitor and modify
any thread, module, procedure, or variable on any processor. Also,
all hardware details are accessible from the viewer. An example
of the Viewer is given in Figure 1.
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Figure 2 demonstrates the StarLite Profiler. The user may
monitor the execution of the system by inspecting the frequency
distribution charts. The different charts include frequency
distributions of where the sytem is spending its time by module
number, where selected modules are spending their time by program
counter values, and op code usage in the architecture. With the
aid of the Profiler, hot spots in the program can be easily
detected and then the user may tune the code to improve system
performance.

Finally, each student is expected to do a semester project.
Since the system is open, a student may either evaluate alternative
implementations for existing interfaces, or construct additional
layers of software.

2.3 Observations

StarLite is based on a layered design with standard
interfaces. Two of the research issues are how to partition the
layers and how to define the interfaces at each layer.

To experiment with different options, the class designed and
implemented a UNIX-compatible operating system according to the
layering principles defined by ISO[3]. The StarLite UNIX is
proprietary in that it is not based upon nor does it contain any
code from other UNIX implementations. We, including the students
in the past, have rewritten the system several times to try
different layering and implementation strategies. We have found
interface specification to be a more demanding task than doing the
implementation. In other words, writing a monolithic piece of code
to solve a problem is much easier than creating a layered design
in which the layers are intended to form functionally complete and
useful subsets that have a lifetime beyond the program in which
they are contained.

We have also found two other problems with the layered design.
The first problem is the overhead of procedure calls through
multiple layers of software. The second problem results from
application requirements, such as protection features, which can
affect interfaces and implementations at a number of layers. Even
if the requirement is removed at a higher layer, there may be
unused procedures and data structures at lower layers that affect
performance. Both problems are being solved by improving compiler
technology.
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2.4 Examples:

2.4.1 StarLite Machine Models

The StarLite interpreter supports the simultaneous execution
of multiple virtual processors in a single address space. Figure
3 describes the three virtual machine models supported by StarLite:
single processor, multiprocessor, and distributed processors. All
software developed in the laboratory uses one of these machine
models as a base. For distributed processors, each virtual
processor has its own copy of the test software. For the other
machine models, the software is shared by all processors.

2.4.2 Multiprocessor Machine Models

Figure 4 illustrates a program running on a multiprocessor
system. Each small box indicates the current state of an
individual processor. The letter R stands for Running, and I for
Idle. The example shows that only three processors are being
utilized.

Figure 5 shows several of the StarLite visualization abstract
data types. In the State Queue data type, the shaded area in each
square indicates a frequency count for a single simulation entity.
This visualization aid is particularly useful for spotting system
bottlenecks, such as long delay lines for queues. The letter 'v'
in the disk window indicates the current position of the read/write
head over the surface of the disk.

2.4.3 Distributed System Models

Figure 6 illustrates the user view of a 4-node network. Each
node has a window that represents its console. Furthermore, each
node is running the UNIX variant developed by the class. Two of
the nodes have booted up to the shell level and are ready to accept
user commands. One of the nodes has tracing enabled for its disk
actions. After the nodes have booted, the StarLite user can
execute system tests, collect statistics, or examine/modify the
system state.

Figure 7 presents parts of the environment for testing network
protocols. The student first indicates the transmitting and
receiving parties. When the execution is invoked, each window
displays the detailed activities of each node. The student may
also test the protocols under different failure assumptions. For
example, how would the protocol perform if one of the nodes
temporarily fails? By using the FAIL and REBOOT options, the
student may crash and reboot nodes and then observe the network
performance or fault-tolerance of their algorithms.
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2.4.4 Ethernet Model

Figure 8 illustrates the StarLite windows for EtherNets. As
operators, such as "read" or "write," are applied to the simulated
devices, the effects are depicted in their windows. For a network
device, the network state as well as each packet's size and
destination address are displayed. Optionally, the transferred
data can also be listed. Each EtherNet window represents a network
of as many as several hundred stations. The state of each station
is denoted by a letter, with upper case indicating a pending
request, and lower case a completed operation. For example, a
transmit request remains pending until either the backoff algorithm
fails or the transmission completes.

The EtherNet operators are Transmit, Broadcast, Receive, and
rec3ive-All. There is also an Idle state. For example, the
EtherNet 2 window shows the current state of a 6-node EtherNet,
where the transmission from node five to node two is completed
while nodes one, three, four, and six are idle. The standard menu
options are Break, Continue, Speed, Examine, Stop, and Exit. The
Speed option is particularly useful because it can be used to vary
the speed of a physical device so that experiments can be run with
different configurations of networks and disks. By increasing the
speed of one component we may expose bottlenecks in others.

3.0 Conclusion

StarLite is an effective software education tool. It is the
only realistic alternative for students who do not have access to
a distributed system. StarLite forces the user to concentrate on
the important aspects of a problem by eliminating concern over
details. By encouraging the study of elegant and efficient
interfaces, the students learn a more disciplined approach to
distributed systems development.
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StarLite -- A Laboratory
for

Operating Systems Research

Abstract environment, remote procedure call packages,
r aand finally physical hardware. We do not claim

Laboratories areaprerequisite to all scientific that StarLite is a replacement for these proven
investigation. They contain standard equipment options. Rather, it defines a new dimension that
that facilitates experimentation. This paper dis- is made possible by advancing software and
cusses the characteristics of a laboratory for hardware technology.
operating systems research. The software exe-
cutes on a single host yet it supports a variety of StarLite is designed to facilitate systems re-
machine models, including that of a multi-node search. For example, StarLite supports the exe-
distributed system. cution nfa distributed ormultiprocessorsoftware

1.0 Introduction ssLem or a single hardware processor. In the
past, a systems researcher had to purchase mul-

In this paper, we report our experences with tiple CPUs and network interfaces to perform ex-
a new software laboratory, StarLit,.. It was con- periments. With StarLite, only a single computer
structed to support research in parallel comput- is required. Also, StarLite is portable; the support
ing, database, operating system, and network software is written in C. Portability allows soft-
technology. The discussion includes the motiva- ware to be easily shared among different research
tion for StarLite, an outline of its structure, and groups. StarLite provides a standard set of tools
a description of some of its software tools. and a components library so experiments can be

reproduced by other researchers. Finally, soft-
Laboratories are a prerequisite to all scientific ware developed using StarLite in a host environ-

investigation. They contain standard equipment ment will execute in a given target machine
that facilitates experimentation. The ability to without modification of any layer except the
quickly createexperiments amplifies a scientist's hardware interface. The software is organized as
intellectualability. The use of visualization tools module hierarchies composed from reusable
enhances a scientist's ability to discover the components.
operational characteristics of complex systems.

StarLite has been used to implement a multi-
Another important advantage of standard processor UNIX (Phoenix), a distributed data-

laboratory equipment is that experiments can be base system[ I] and a suite of network protocols.
validated independently. In some disciplines, It has also been used to support graduate and
results are not accepted-for publication until they undergraduate courses in operating systems and
have been reproduced by other researchers, database technology.

What is an appropriate laboratory for operat- In the remainderof the paper, the components
ing systems research? Some common answers of StarLite are presented together with a repre-
are complexity analysis, discrete-event simula- sentative sample of software tools. Also,
tion, queuing analysis, IBM's virtual machine StarLite's effectiveness as a software laboratory
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is discussed. which some modules are native code and some
interpreted. The native code modules are up to

2.0 StarLite Components twenty times faster than their equivalent inter-
preted code versions.

The purpose of this Section is to describe the
components of the StarLite environment and to The advantage of the interpreted code ver-
explain their use for software development. The sions is that they are machine invariant. As a
StarLite components include a Modula-2 com- result, object code developed on any machine can
piler, an interpreter, a window package, a viewer, be executed without recompilation on any other.
a simulation package, and a profiler. The com- Thus, we have a master components library that
piler and interpreter are implemented in C for is shared, via the network, by all the machines in
portability. The rest of the software is in Modula- our building. The invariance is achieved by de-
2. The system currently runs on SUN worksta- fining a canonical object module format. The
tions and personal computers. StarLite software tools, such as the Viewer and

Profiler, can be used transparently on either class
2.1 Compiler of module.

2.2.1 Machine models
The compiler is compatible with Modula-2 as

defined by Wirth[2]. It generates interpreted M- Figure 1 illustrates the three virtual machine
code by default, although it can also generate models supported by the interpreter: single proc-
native code for a range of target machines. As a
result, StarLite modules that are developed in the sor, mltsor, and ite pros
host environment can be retargeted without ss All oftwe de el in t batormodiicaion or mbeded estng.uses one of the machine models as a base.modification for embedded testing.

2.2 Interpreter The dotted line in the Figure indicates that all
of the machine models, including the distributed
system, execute as a single UNIX process. The

noThe StarLite interpreter supports the simulta- rationale was to make network devices fast by
neous execution of multiple virtual processors in using memory copies for transfers and to make it
a single address space. For example, to test a uigmmr oisfrtasesadt aei
aistigled a e sace , wr examplht tt a easy for the software tools to control the state of
distributed database system, we might start a file a distributed computation. The system could
server and several clients. Each node has its own easily be extended to use multiple processes or
operating system and user-level processes. In the multiple machines, but with a loss of functional-
current environment, all the code and data for the ity.
virtual machines executes as a single UNIX
process. The StarLite interpreter on a SUN 3/260 For distributed processors, each virtual proc-
executes a single virtual processor at a speed of essor has its own copy of the test software. For the
from one to six times that of a PDP 11/40, which other machine models, the software is shared by
was widely used for operating system research all processors.
ten years ago. Even so, the execution speed is 20-
30 times slower than a SUN 3. The "Coroutines" and "Mp" boxes represent

the Modula-2 modules that are the test software's
To address this speed deficiency, the inter- view of a machine model. The definition mod-

preter also supports mixed-mode execution in ules for Coroutines and Mp define the interfaces
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that support interrupt and trap handling, context All test systems begin execution quickly
switches, device I/O, memory management, since only the object code for the program
timer services, and spin locks. These interfaces module is loaded initially. Additional modules
mimic the C interfaces that would normally be are loaded as they are referenced. For example,
created to make a physical machine's compo- one version of the operating system defers load-
nents accessible to an operating system's code. ing the file system's modules until a file opera-

tion is performed.
The Modula-2 implementation modules for

Coroutines and Mp emulate the behavior of 2.2.3 Clock control
physical machines. For example, a DISABLEprohedurical ch les Forxaplie, aIn . The existence of race conditions in an embed-procedure call disables all device interrupts. ded system can often make error tracing difficult.

One goal of StarLite is toretarget to an embed- For example, inserting an output statement can
ded system only by replacing the implementa- cause an error to disappear. This effect is possible

tions of the virtual machine interface modules in both embedded systems and in StarLite. In the

and recompiling. All higher level software former case, it is eliminated by using a hardware
should remain invariant. As a result, the success monitor or an in-circuit emulation system. In

of StarLite hinges on the design of the virtual StarLite, we use clock control.
machine interfaces (deinition modules). Clock control modifies the interpreter's vir-

If the interfaces are not properly designed, tual clocks so that time appears to "stand still."

changes will be necessary when retargeting to an Any number of I/O or debugging actions may

embedded system. Changing an interface may occur before resuming execution. This option is

require rewriting all dependent modules. If the also very useful for collecting statistics without

implementations do not capture the timing or disturbing the behavior of a system. Finally,
operational aspects of physical devices, empiri- clock control is essential for our visualizationcatonal a sysis may be fruitless v aids so that they can be attached to a program

without affecting its actions.

In addition to supporting the various machine
models, the interpreter also implements some
other unique features of the StarLite architecture.
These include demand loading, clock control, When debugging an embedded system, it is
and dynamic restarts. annoying to discover an error, return to the host

level, compile, link, prepare a boot image, re-

2.2.2 Demand loading boot, and then run the system to the point of error
only to discover another mistake. The problem is

The StarLite interpreter supports demand magnified for distributed systems.
loading. That is, modules are loaded at the point The StarLite architecture is designed so that
that one of their procedures is called. A linker is Th e ta i on moue in des ig s o -
superfluous. As soon as any module in a test an ee omodule in inpro-
system is compiled, the system can be executed, gram can be recompiled while the interpreter's
For example, the operating system (66 modules; execution is suspended. The recompiled module
7500 lines) can be compiled and booted in less can then be reloaded and the test system restartedthan 30 seconds. without repeating the link-make-boot cycle.This option is used to repair node software while
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testing a fault-tolerant distributed system. content of sectors as they are transferred to/from
a disk. For a network device, the network state as

Another dynamic restart feature supports the well as each packet's size, source and destination
emulation of partial failure as might be experi- addresses are displayed. Optionally, the packet
enced in a distributed system. The interpreter content can also be listed.
allows any loaded module, or set of modules, to
be restarted at any time. Thus, reading the corre- A StateQueue is a window that displays a
sponding object modules from disk is avoided, single statistic, such as queue length, for a collec-

tion of similar entities. The statistic is displayed
For a distributed system, the user can induce as a bar chart that is scaled across all the entities.

virtual processor failures and then restart operat- For example, we use a StateQueue to display
ing systems on the failed nodes without loading delay time for all the critical sections in the
any software from disk. operating system. The existence of bottlenecks is

exposed immediately as a spike.
2.3 Windows

2.4 Viewer
Distributed systems are characterized by par-

tial failure and by non-deterministic actions. For The StarLite Viewer extends the functionality
example, a network device interrupt is non- found in traditional debuggers. First, the Viewer
deterministic because a programmer cannot pre- allows the user to explore, monitor and modify
dict the state of the program when an interrupt any thread, module, procedure, or variable on
occurs. The actions of programs composed from any processor. Second, the Viewer is an abstract
multiple processes may also be non-determinis- data type. The user can create as many of them
tic. as needed by connecting a Viewer to each thread

of execution. Also, all hardware details are ac-
As a result, visualization aids[31 can be an cessible from a Viewer.

important component of system development
and maintenance support. Multiple text and For example, registers or procedure call
graphics windows are used in StarLite to high- chains can be examined directly. This is possible
light and monitor system actions. Any compo- because the virtual processor interface is defined
nent of a distributed system can be presented to as a Modula-2 definition module, which in turn
the useras an abstract datatype that uses windows is encoded using Gutknecht's symbol file repre-
to display or modify its actions. sentation[4].

Figure 2 displays instances of the StarLite ab- When an instance of the debugger is opened
stract data types for the clock and disk virtual de- on a coroutine (thread), it displays Message,
vices as well as for StateQueues. As device Module, Coroutine, and Control Panel windows.
orders, such as "read" or "write" are applied to The Module window is a scrollable list of the
the virtual devices, the effects are depicted in modules that comprise a thread's implementa-
their corresponding windows. tion. The source code for a module, such as

TreeDemo, is displayed if it is selected using the
Foraclock, thedisplay shows theelapsedtime mouse. The Source window is also scrollable.

in terms of the number of clock ticks. For a disk, The user sets breakpoints by clicking on text.
the surfaces and track position are indicated. The Breakpoints, such as the one on line 58, are then
user can also set breakpoints to examine the displayed in the Control Panel window.
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By clicking on the continue option, execution does not depend on time. For instance, file
is resumed until the next breakpoint is met. At systems do not usually have timing constraints.
that point, the Coroutine window is updated to However for empirical analysis, it is useful to
display the current state vector and a scrollable, manipulate virtual devices that have timing char-
call-chain list. acteristics that emulate those of the correspond-

ing physical devices. The StarLite simulation
If the breakpoint is at the module level, as in package provides an interface that captures much

the example, its global variables are displayed of the functionalityofadiscrete-eventsimulation
symbolically. If in a procedure, local variables language, such as GPSS.
are displayed. By clicking on data names, the The entities provided are a simulation time
user can view and modify program variables, clock, tables, and stores. The library also con-
either at the module global level or anywhere in tains a variety of statistics and plotting routines to
the call chain. If k coroutine variable is exam-
ined, the Viewer switches to a new call chain support the analysis of the resulting data.
automatically. 2.6 Profiler

Two other features of the Viewer are its Figure 4 shows the profiling tool in use with

openess and its support of type filters. The the Phoenix operating system. The profiler can

StarLite Vieweris "open" becauseall itscapabili- be used with any of the machine models to

ties are available under program control. For analyze the performance of sequential, parallel,
example, a running program can set breakpoints or distributed algorithms.

on itself by using the procedural interface to the The top window, Modules, lists a frequency
debugger.. distribution by module number of where an

A type filter is a module that controls Viewer executing system, in this case the Phoenix oper-
access to type instances. As a result, users can ating system, is spending its time. As spikes
tailor visualizations of data to create their own appear, the user can click on a module in the
debugging "views". Figure 3 illustrates the use Module Key window to display additional histo-

of a type filter to examine a tree manipulation grams. In the Figure, the BitMap and PROCESS

program. The filter displays the tree data struc- modules have been selected. The module distri-

ture graphically rather than as a collection of butions are by program counter value.

fields. We are working on an enhanced Profiler that

Another unique feature of StarLite filters is will display source text when a program counter

that they can retain the interactive features of the value is selected. At present, the inversion must

underlying Viewer. In the Figure, two of the tree be done by a separate program.

nodes have been selected with the mouse. One is The bottom window, Instructions, records a
the leaf node 'g' and the other is the interior node frequency distribution by opcode value of the in-
T. The filtercauses the debugger to display their structions being executed by the virtual machine
field data interactively. Next, the right subtreeof architecture. Each histogram adjusts its scale
node T is selected. Since this is also a Tree, it too dynamically.
is displayed using the filter. 3.0 Two Examples
2.5 Simulation package In this Section, two examples are used to dem-

In most cases, the correctness of a test system onstrate some of the uses of StarLite. The first
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example uses a distributed system, the second a of retained data/instructions in its cache.
a multiprocessor. In the example, two processes communicat-

* The first example, in Figure 5, is a fault-toler- ing through a pipe block on the "pipe full" and
ant implementation of a one-bit sliding window "pipe empty" conditions. Normally, when a
protocol running on a 4-node distributed system. process blocks, it can be restarted on any proces-
Processors 1 and 4 are linked as well as 2 and 3 sor. However, if each processor has data, instruc-
to create two connections. tion, or address caches, restarting on a different

0 Each virtual processor has its own memory, processor can incur a significant performance

interrupt and trap vectors, clock, and a connec- penalty.

tion to a shared EtherNet device. As each copy The display tool in Figure 6 depicts which
of the protocol executes, it lists the number of processors are idle or busy as the system exe-
packets received, the control bits, and the packet cutes. As a result, we get a graphic interpretation
sequence number. In the absence of errors, one of how well an affinity algorithm performs. Lots
packet is received for every packet that is passed of movement is bad; a steady view is good.
up to the user. Only "in sequence" packets are
listed; thus, a receive count greater than one in- 4.0 Summary
dicates amismatchedtimerinterval or the one-bit We cannot offer proof that the StarLite labo-
protocol synchronization problem[5] because ratory is "the" appropriate laboratory for operat-
more packets than expected are being received. ing systems research. However, it does demon-

The Control Panel allows the user to insert strate that it is feasible to pursue major systems
processorfailuresorrestartactionsintoarunning projects in a virtual interface environment. The
system. FAIL stops the selected processor environment cannot execute programs as fast as
immediately. FAILSOFT generates a power fall a physical machine and it would be infeasible to
interrupt and, after a fixed period, stops the proc- emulate all of a physical machine's effects, such
essor. FAILSOFT is used to test algorithms that as memory interference. However, the advan-
depend on stable storage. REBOOT will reboot tages are a greatly accelerated development cycle

* a selected program on a failed node. In Figure 5, and totally portable, and hence reproducible,
processor 3 has been rebooted once, which is results. Furthermore, developed software can be
denoted by its "3.1" label. Notice that the packet used immediately in classes.
sequence numbers in processors 2 and 3 are dif- StarLite is feasible because workstations now
ferent. When processor 3 rebooted, it recovered have large physical memories and are fast
the sequence number stream so that processor 2 enough to run interpreters at the speed of physi-
did not need to restart the packet sequence. cal machines ten years ago. Ten years ago it
Finally, PATTERN automatically fails and re- would not have been feasible to run an emulator
boots nodes based on a user-specified failure on a PDP- II and then to implement an operating
function. system on top of it. Today it is feasible. StarLite

The second example in Figure 6 illustrates the does not currently take advantage of the multi-
Phoenix operating system running on a 16-node thread support available on some of the newer
multiprocessor. We are using pipes at the shell workstations, but it could.
level to test our cache-affinity scheduling algo- StarLite demonstrates the effectiveness of
rithm. A cache affinity processor assignment research based on virtual interfaces as opposed to
algorithm attempts to schedule a process on the IBM's virtual machine approach, or even the
processor most likely to have the largest amount
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traditional use of physical machines. The great
majority of the machine details contribute noth-
ing but a source of error to the intellectual effort
of improving operating system technology.
StarLite forces the user to concentrate on the
import aspects of a problem by eliminating de-
tail.

By encouraging the study of elegant and func-
tionally complete interfaces, we impose- disci-
pline on hardware designers who all too often
make all the decisions before the operating sys-
tem designer sees the machine. In the future, the
operating system designer will dictate the con-
straints and will be able to defend his actions
since StarLite supports operating system devel-
opment for virtual hardware.
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The StarLite Programming Environment
Extended Abstract

1.0 Introduction

In this paper, we discuss the components and design of the StarLite programming
environment for Modula-2[1]. StarLite was designed to facilitate systems research in
parallel computing, database, operating system, and network technology.

For example, StarLite supports the execution of a distributed or multiprocessor soft-
0 ware system on a single hardware processor. In the past, a systems researcher had to

purchase multiple CPUs and network interfaces to perform experiments. With S tarLite,
only a single computer is required. Also, StarLite is portable; the support software is
written in C. Portability allows software to be easily shared among different research

* groups. StarLite provides a standard set of tools and a components library so experi-
ments can be reproduced by other researchers. Finally, software developed using
StarLite in a host environment will execute (after retargeting) in a given embedded
environment without modification of any layer except the hardware interface. The
software is organized as module hierarchies composed from reusable components.

StarLite has been used to implement a multiprocessor UNIX (Phoenix), a distributed
database system[2] and a suite of network protocols. It has also been used to support
graduate and undergraduate courses in operating systems and database technology. In

* the remainder of the paper, the components of StarLite are presented together with a
brief introduction to the challenges encountered in their design.

2.0 StarLite Components

* The StarLite components include a Modula-2 compiler, an interpreter, a window
package, a viewer, a simulation package, a profiler, and a software reuse library. The
compiler and interpreter are implemented in C for portability. The rest of the software
is in Modula-2. The system currently runs on SUN 3/4 workstations and personal

* computers.

2.1 Compiler

The compiler is compatible with Modula-2 as defined by Wirth. It generates
interpreted M-code by default, although it can also generate native code for a range
of target machines. As a result, StarLite modules that are developed in the host envi-
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ronment can be retargeted without modification for embedded testing. The compila-
tion time on a SUN 3/260 for the 66 modules (7500) lines that comprise the Phoenix
operating system is one minute (clock) or 16 seconds (user) time.

One of the goals for StarLite is object module, execution invariance across all
architectures. Thus, the object code in our shared library can be executed on any
architecture without recompilation. Execution invariance is achieved by defining a
canonical object module format, designing special instructions, and by using a "smart"
loader. For example, the loader converts every value in the constant segment of an
object module to match the byte-ordering and floating-point format of the target.

2.2 Interpreter

The StarLite interpreter supports the simultaneous execution of multiple virtual
processors in a single address space. For example, to test a distributed database system,
we might start a file server and several clients. Each node has its own operating system
and user-level processes. In the current environment, all the code and data for the virtual
machines executes as a single UNIX process. The StarLite interpreter on a SUN 3/260
executes a single virtual processor at a speed of from one to six times that of a PDP
11/40, which was widely used for operating system research ten years ago. Even so,
the execution speed is 20-30 times slower than a SUN 3.

To address this speed deficiency, the interpreter also supports mixed-mode execu-
tion in which some modules are native code and some interpreted. The native code
modules are up to twenty times faster than their equivalent interpreted code versions.
The transition from interpreted code to native code is accomplished by means of an XM
(exchange machine) instruction in the interpreter. The native code is generated to
conform to the StarLite virtual machine architecture so that software tools, such as the
Viewer and Profiler, can be used transparently on either class of module.

0 2.2.1 Machine models

Figure 1 illustrates the three virtual machine models supported by the interpreter:
single processor, multiprocessor, and distributed processors. All software uses one of

0 the machine models as a base.

The dotted line in the Figure indicates that all of the machine models, including the
distributed system, execute as a single UNIX process. The rationale was to make
network devices fast by using memory copies for transfers and to make it easy for the
software tools to control the state of a distributed computation. The system could easily
be extended to use multiple processes or multiple machines, but with a loss of func-
tionality. For distributed processors, each virtual processor has its own copy of the test
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software. For the other machine models, the software is shared by all processors.
Figure 2 illustrates the Phoenix operating system running on a 16-node multiprocessor
together with a visualization tool that indicates whether a processor is busy or idle.

The "Coroutines" and "Mp" boxes represent the Modula-2 modules that are the
test software's view of a machine model. The definition modules for Coroutines and
Mp define the interfaces that support interrupt and trap handling, context switches,
device I/O, memory management, timer services, and spin locks. These interfaces
mimic the C interfaces that would normally be created to make a physical machine's
components accessible to an operating system's code. The Modula-2 implementation
modules for Coroutines and Mp emulate the behavior of physical machines. For
example, a DISABLE procedure call disables all device interrupts.

One goal of StarLite is to retarget to an embedded system only by replacing the im-
plementations of the virtual machine interface modules and recompiling. All higher
level software should remain invariant. As a result, the success of StarLite hinges on
the design of the virtual machine interfaces (definition modules). If the interfaces are
not properly designed, changes will be necessary when retargeting to an embedded
system. Changing an interface may require rewriting all dependent modules. If the im-
plementations do not capture the timing or operational aspects of physical devices, em-
pirical analysis may be fruitless.

In addition to supporting the various machine models, the interpreter also imple-
ments some other unique features of the StarLite architecture. These include demand
loading, clock control, and dynamic restarts.

2.2.2 Demand loading

The StarLite interpreter supports demand loading. That is, modules are loaded at the
point that one of their procedures is called or when an external variable is referenced.
A linker is superfluous; however, "cat" can be used for that purpose if desired. As soon
as any module in a test system is compiled, the system can be executed. All test systems
begin execution quickly since only the object code for the program module is loaded
initially. Additional modules are loaded as they are referenced. Implementing demand
loading is complicated by Modula-2's module initialization conventions.

2.2.3 Clock control

The existence of race conditions in an embedded system can often make error tracing
difficult. For example, inserting an output statement can cause an error to disappear.
This effect is possible in both embedded systems and in StarLite. In the former case,
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it is eliminated by using a hardware monitor or an in-circuit emulation system. In
StarLite, we use clock control.

Clock control modifies the interpreter's virtual clocks so that time appears to "stand
still." Any number of I/O or debugging actions may occur before resuming execution.
This option is also very useful for collecting statistics without disturbing the behavior
of a system. Finally, clock control is essential for our visualization aids so that they
can be attached to a program without affecting its actions.

The StarLite clock is driven by instruction execution. At present, one tick represents
100 instructions. For algorithm or system analysis, we get an absolute measure (in
number of instructions) of every improvement.

2.2.4 Dynamic restart

When debugging an embedded system, it is annoying to discover an error, return to
the host level, compile, link, prepare a boot image, reboot, and then run the system to
the point of error only to discover another mistake. The problem is magnified for
distributed systems. The StarLite architecture is designed so that an implementation
module in a running program can be recompiled while the interpreter's execution is
suspended. The recompiled module can then be reloaded and the test system restarted
without repeating the link-make-boot cycle. This option is used to repair node software
while testing a fault-tolerant distributed system.

Another dynamic restart feature supports the emulation of partial failure as might
be experienced in a distributed system. The interpreter allows any loaded module, or
set of modules, to be restarted at any time. Thus, reading the corresponding object
modules from disk is avoided. For a distributed system, the user can induce virtual
processor failures and then restart operating systems on the failed nodes without
loading any software from disk.

2.3 Viewer

The StarLite Viewer extends the functionality found in traditional debuggers. First,
the Viewer allows the user to explore, monitor and modify any thread, module, proce-
dure, or variable on any processor. Second, the Viewer is an abstract data type. The
user can create as many of them as needed by connecting a Viewer to each thread of
execution. Also, all hardware details are accessible from a Viewer. For example,
registers or procedure call chains can be examined directly. This is possible because
the virtual processor interface is defined as a Modula-2 definition module, which in
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turn is encoded using Gutknecht's symbol file representation[3].

When an instance of the debugger is opened on a coroutine (thread), it displays
Message, Module, Coroutine, and Control Panel windows. The Module window is a
scrollable list of the modules that comprise a thread's implementation. The source code
for a module, such as TreeDemo, is displayed if it is selected using the mouse. The
Source window is also scrollable. The user sets breakpoints by clicking on text.
Breakpoints, such as the one on line 58, are then displayed in the Control Panel window.
By clicking on the continue option, execution is resumed until the next breakpoint is
met. At that point, the Coroutine window is updated to display the current state vector
and a scrollable, call-chain list.

If the breakpoint is at the module level, as in the example, its global variables are
displayed symbolically. If in a procedure, local variables are displayed. By clicking
on data names, the user can view and modify program variables, either at the module
global level or anywhere in the call chain. If a coroutine variable is examined, the

0 Viewer switches to a new call chain automatically.

Two other features of the Viewer are its openess and its support of type filters. The
StarLite Viewer is "open" because all its capabilities are available under program
control. For example, a running program can set breakpoints on itself by using the
procedural interface to the debugger..

A type filter is a module that controls Viewer access to type instances. As a result,
users can tailor visualizations of data to create their own debugging "views". Figure
3 illustrates the use of a type filter to examine a tree manipulation program. The filter
displays the tree data structure graphically rather than as a collection of fields.

Another unique feature of StarLite filters is that they can retain the interactive
features of the underlying Viewer. In the Figure, two of the tree nodes have been
selected with the mouse. One is the leaf node 'g' and the other is the interior node T.
The filter causes the debugger to display their field data interactively. Next, the right
subtree of node T is selected. Since this is also a Tree, it too is displayed using the filter.

2.4 Profiler

Figure 4 shows the profiling tool in use with the Phoenix operating system. The
profiler can be used with any of the machine models to analyze the performance of
sequential, parallel, or distributed algorithms.

The top window, Modules, lists a frequency distribution by module number of where
an executing system, in this case the Phoenix operating system, is spending its time.
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As spikes appear, the user can click on a module in the Module Key window to display
additional histograms. In the Figure, the BitMap and PROCESS modules have been
selected. The module distributions are by program counter value.

We are working on an enhanced Profiler that will display source text when a program
counter value is selected. At present, the inversion must be done by a separate program.
The bottom window, Instructions, records a frequency distribution by opcode value of
the instructions being executed by the virtual machine architecture. Each histogram
adjusts its scale dynamically.

2.5 The software reuse library

The StarLite Reuse Library currently contains several hundred modules (100,000
lines) that are all implemented as abstract data types. Modula-2 is our vehicle to capture
existing software technology. All students, both graduate and undergraduate, and
faculty who use the system contribute to the library. A module must pass rigorous
standards to be accepted for shared use.

In addition to the traditional, Stack and Queue ADTs, the library provides modules
for multiple machine, language, and computational models. For example, we have a
Prolog inference engine and a relational database package that can be called from
Modula-2 programs. We also have modules for concurrent programming, exception
handling, locking, rendezvous and promise-based message passing, and discrete-
event simulation.

3.0 Summary

StarLite is feasible because workstations now have large physical memories and are
fast enough to run interpreters at the speed of physical machines ten years ago. Ten
years ago it would not have been feasible to run an emulator on a PDP- 11 and then to
implement an operating system on top of it. Today it is feasible. StarLite does not
currently take advantage of the multi-thread support available on some of the newer
workstations, but it could.
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The UNIX Operating System maintains a hierarchical family-tree ordering of the processes running on a

machine. This tree is manipulated by three operations: fork, exit, and wait. The data structure that implements the

process tree is a linear array; each entry or "slot" in the array contains the attributes of an individual process and the

links that maintain the position of the process within the array. In the traditional implementations of UNIX, the pro-

cess data structure can be accessed by at most one process at any time, and several of the operations that manipulate

the tree run in time proportional to the number of children involved. We discuss an implementation of the UNIX

semantics in which the process data structure may be locked one record at a time, allowing concurrent execution of

the basic operations. We present a locking strategy that minimizes the locks acquired for any operation to proceed.

We show that the tree operators can manipulate our data structure in constant time, and we show that deadlock can

be efficiently avoided with our locking strategy.
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Si
1. Introduction

The UNIX operating system maintains a logical tree structure of processes in a kernel table. Clearly, some

form of concurrency control is required to maintain the consistency of the data structure in the presence of multiple

simultaneous operations. In a traditional UNIX implementation [Bach 1986] [Leffler et al. 1989], a process running

in the kernel cannot be pre-empted, and sequential access to the process table is guaranteed. In effect, a single lock

governs the entire kernel state, including the process table. The inability to pre-empt an unimportant process in the

kernel on behalf of a higher priority process makes this implementation less suitable for real-time applications.

Also, exclusive access to the process table does not scale well to a large, possibly distributed system. If the total

number of processes waiting to perform operations on the process data structure grows without bound, then the

delay that each process incurs waiting to gain access to the structure will grow without bound as well. A finer

granularity of locking is required.

In this paper, we consider locking the process data structure at the granularity of a single process record. In

the remainder of this section, we discuss the semantics of the tree operations and the traditional UNIX implementa-

tion of these semantics. In Section 2, we present our own data structures and the constant time algorithms which

operate upon them. In Section 3, we discuss the locking strategy that supports concurrent access to the data struc-

ture, and in Section 4, we present an efficient method for avoiding deadlocks caused by the method of Section 3.

We conclude in Section 5.

The UNIX process model is illustrated in Figure 1. Each process is associated with a unique positive integer,

or PID, which serves as a name for the process. In our diagram, the root process running "init" has PID 1, and leaf

node executing "a.out" has PID 41. For each process, UNIX records PPID, or Parent Process ID. We show PPID's

in parentheses.

The operation that performs process creation is called fork. When a process performs a fork, then a child pro-

cess is created. The child has a new and unique PID, and the child is given a PPID equal to the PID of the caller of

the fork. The new process is initialized as a copy of its parent. For example, in Figure 2, the shell, "sh," with PID

35 has performed a fork. The new process has PID 77 and PPID 35, and it is also currently running "sh".

The operations that remove a process from the tree are exit and wait. Exit causes a process to cease running;

it may be initiated by the subject of the exit itself, or it may be induced from elsewhere in the system. In UNIX, an

exiting process is marked as a zombie, and it remains in the process table until it is deallocated by a later cleanup
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operation. Figure 3 shows the results of an exit by Process 77.

In the normal operation of UNIX, the cleanup of a zombie occurs when the parent performs a wait operation.

The caller of wait searches among its children for a zombie. If one is found, then an exit status code and some

accounting statistics are read from the process record, and the slot is then unlinked from the tree and deallocated. If

a zombie is not found immediately, the parent sleeps until one is available. Figure 4 shows the system tree after the

parent of Process 77 performs a wait.

The parent, of course, can defer waiting for an arbitrarily long period of time and leave the zombie in the sys-

tem. The process slot held by the zombie cannot be immediately reallocated. The UNIX System V solution [Bach

1986] is to generate a "Death of Child" signal whenever an exit occurs. If the recipient of the signal has explicitly

indicated to the kernel that it will ignore that signal, then the zombie is immediately deallocated by the kernel. We

present a solution in Section 2 that solves the same problem without requiring specific actions from a user process.

Another concern with exit is the disposition of children of the deceased process. In UNIX, these orphans are

made children of the init process. Figure 5 shows the reassignment of Process 41 after Process 35 performs an exit.

Because the parent fields in the slots of each orphan are updated immediately to reflect the new position within the

tree, the a UNIX exit which creates n orphans must run in O(n) time.

The process tree is embedded in a binary tree formed by pointers within the process table slots. For each pro-

cess, the identity of a first child and a next sibling are recorded. Back links are also maintained; each process is

associated with a previous sibling and, of course, a parent. Links that would represent the family tree of Figure 1

are shown in Figure 6.

2. The Data Structure

Having presented the UNIX operating system process operations, we now present the data structures that our

scheme uses to implement them. We assume that there is a "User Record" associated with each process. No

assumption is made about the arrangement of the records; they may be in a fixed-length array, or a dynamically

allocated heap. A name or handle exists which can be used to reference each record; for the purposes of discussion,

we call this name a ptser. We require that a lock be associated with each User Record, and we assume that a

process will block until a requested lock is available. Further requirements for our locking mechanism are stated

* below. We assume a mechanism for binding PID's to User Records, and we assume an allocation and release
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mechanism for unused records. We require from the latter a guarantee that no two forking processes will be granted

the same User Record and that released User Records are not allocated for other purposes. Finally, we assume a

mechanism, such as a semaphore, to allow a waiting process to block without holding any locks until a child has ter-

minated.

Figure 6 shows the fields of the User Record which are relevant to our discussion. Following the UNIX

implementation discussed earlier, we use the Parent , FirstChild, NextSibling, and PrevSibling

fields to record the position of a record within the process tree. The remaining fields are based on the Phoenix Mul-

tiprocessor Operating System under development at the University of Virginia.

The ResultHead and ResultTail fields point to a linked queue of process return codes. When a pro-

cess exits, it places its return code and PID in its parent's list and frees the User Record that it occupied. The

Phoenix result list allows the immediate reuse of a zombie's User Record without requiring that a process take the

explicit step of ignoring a "Death of Child" signal. The wait call now runs in O(1) time since it removes a record

from the head of a result list, after possibly waiting for a wakeup action.

The Generation and ParGeneration fields allow individual exit operations to manipulate the process

data structure in constant time, even if an arbitrary number of orphans must be handled. Specifically, the Gen-

eration field contains a unique integer value for the process currently bound to the User Record. The ParGen-

eration field is merely the generation value of the process's parent. When any process exits, the Generation

field of the User Record that it had occupied is immediately updated. If the exiting process happens to be a parent,

then the surviving children can determine that they are orphans at the time that they exit. A similar test can be used

for any other operation which requires a correct PPID for a process. The work of resolving n orphans is spread out

over the n exit calls which must yield exit codes to the root process, and each operation manipulates the tree in 0(1)

time.

The finite number of values which the Generation field can take on could potentially cause a problem

with wraparound. However, if a 64-bit unsigned value is used, then the 2x10' 9 numbers available should be ade-

quate for most applications.
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3. The Locking Protocol

In this section, we consider the locks that the exit, fork, and wait operations must ac4uire in, to guarantee

correct concurrent manipulation of the process data structure. We also consider interference from other syste:,

operations. At the time that a fork, exit, or wait is being executed, another process might take an action which

involves some of the same User Records. The kill system call has this property; a process can call kill to send a sig-

nal to another process at any time. Therefore, we consider kill (and any other arbitrary operation) along with fork,

exit and wait.

Kill. Concurrent operations on the general fields of a User Record are clearly undesirable. Therefore, we

require that an arbitrary operation on a process acquire the lock on the target User Record before the operation is

executed. This lock will also form the basis for preventing interference among kill and fork, wait, or exit.

Exit. A process that is being removed from the tree should clearly not be signaled. Therefore, an exiting pro-

cess should acquire a lock on itself. If two siblings attempt to exit at the same time, then the linked list that they

remove themselves from may be left in an inconsistent state. This can be avoided by requiring an exiting process to

gain a lock on its parent before it proceeds.

Wait. A process might try to pull a result from its result list at the same time that a child tries to add a new

result. Therefore, a process should acquire the lock on its own User Record before performing a wait.

Fork. A forking process must not add a child to its linked list at the same time that a child already there

attempts to remove itself. If a process in a fork call acquires the lock on its own User Record, then we know that

this cannot happen. If the process being created is assigned a PID as the last step of the fork operation, then another

process cannot name the new process until the fork is completed. Thus, an arbitrary call such as kill cannot collide

at the newly allocated User Record, and the overhead of locking the new record can be avoided.

Other Conflicts. In this locking scheme, a kill cannot interfere with an exit because all the records involved

are locked. Kill cannot interfere with wait for the same reason, and the interactions between kill and fork are dis-

* cussed above. A wait only involves the result list of the process making the call, and collisions with any other possi-

ble user of the data structure are covered by the locking rules given above. All collisions with exit have been dealt

with. Collisions with fork involving the parent are prevented by the lock which the parent acquires on itself, and

collisions involving the child are prevented by not giving the child a name until the fork is complete. Thus, the
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locking scheme presented above maintains the consistency of the data structure in the face of all possible conflicts.

For example, suppose our Process 35 decides to exit. The locks it will acquire on itself and on its parent are

shown with squares on Figure 8. Process 35 is protected against arbitrary interference by the lock it holds on its

own record. Process 41 cannot begin an exit until Process 35 completes; therefore it will determine that it has

become an orphan. The parent of Process 35 cannot access its result list with a wait, and it cannot access its sibling

list with a fork. Finally, note that Process 61, the sibling of 35, cannot remove itself from the sibling list until 35

completes and releases the lock on the shared parent.

4. Deadlock

We now consider deadlock. We prevent deadlock by specifying an order in which all operations will attempt

to acquire locks. For wait, fork, and kill, only one lock is required. For exit, we must acquire the lock on the pro-

cess making the call first, and then on its original parent, it is still alive, and finally, on the User Record of the init

process if necessary.

This rule can lead to deadlock. Suppose that an orphan and a child of the orphan exit concurrently, and sup-

pose that each gains the lock on its own User Record. The child of the orphan will now try to lock the orphan's

User Record, and if the child happens to occupy the User Record of the original parent, then the orphan will attempt

to lock the User Record of its child. Because these deadlocks only occur when a process attempts to lock a record

that it doesn't really need to lock anyway, the locking mechanism can detect the condition, abort the incorrect

request, and unblock the orphan. To do this, the locking mechanism should be given the expected generation value

of the parent record being locked. The locking mechanism should atomically examine the generation field of the

target record and decide whether to abort or process the lock request. Also, whenever a process changes a genera-

* tion field, it should notify the locking mechanism. At this time, any pending lock requests for that User Record

should he aborted. If a process has its request for a lock on its parent aborted for either of these reasons, then it

knows it is an orphan and can proceed to lock the init process record.

* This locking rule guarantees that if a user process is holding a lock on a record at some level of the family

tree, then it can only block trying to acquire a lock on a record closer to the root of the tree. Therefore, no cycle can

occur. The partial order implied by the family tree is strong enough to prevent deadlock.
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5. Conclusion

In this paper, we have shown how to implement the UNIX process management primitives for a large number

of processes in an efficient manner. The data structure allows basic operations to run in constant time, and only a

few locks need be acquired to allow operations to run in parallel. Manipulations of our linked lists do not require a

lock on every record that is read or modified, and our exit operation requests at most three locks. Fork, wait, and

kill can run with only one lock each. Because we lock processes and parents of processes, but never children of

processes or siblings of processes, deadlock is easily avoided.
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TYPE
pUser ; (* Index, Pointer, or Name to reference a User RECORD *)
VLONGINT ; (* sufficiently long integer *)
pRes = POINTER TO Result ; (* head of result list *)
User = RECORD

Parent : pUser ; (* parent of this process *)
FirstChild : pUser ; (* head of child list *)
NextSibling : pUser ; (* next entry in child list *)
PrevSibling : pUser ; (* prev entry in child list *)
ResultHead : pRes ; (* head of pending result list *)
ResultTail : pRes ; (* tail of pending result list *)
Generation : VLONGINT ; (* generation # of this process *)
ParGeneration : VLONGINT ; (* generation of parent *)

(* rest of user record of kernel process table follows *)

END

Figure 7
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RDB,
An Open, Real-Time, Relational Database Kernel

Robert P. Cook* and Sang H. Son
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Charlottesville, VA 22903

1.0 Introduction dent databases without having to depend on the
n taccess methods traditionally provided by operat-

In this paper, we discuss the attributes of RDB, ing systems. As a final point, RDB uses up-
which is an "open",real-time, relational database calls[4] to implement late binding of query and

kernel. RDB was implemented using the Star- I/o operations.

Lite(1] software development environment. It

was inspired by the SDB system[2] created by By providing the user of RDB fine-grained
Betz and Smith. control over its operation, it is simple to select

implementation strategies that achieve perform-
Rwish requirent for usehinherormbde s ance and predictability goals. This can be con-

with requirements for high-performance and trasted with traditional database systems that

real-time priority and predictability guarantees. trate aditonal of ten that

RDB is a tool that can be used to achieve these operate asclosed boxes, often with poorperform-

goals but it is the user's responsibility to use it ance and predictability characteristics.

properly. For example, RDB is completely reen- The following sections describe the relational
trant and can be preempted in one context switch model supported by RDB and a simple example
time to perform an action for a high priority that illustrates its use.
process. Thus, a query can be interrupted for an
update action and then restarted. However, if the
low priority process holds locks that the high
priority process needs (priority inversion), it is The RDB kernel supports the following ab-
the user's responsibility to resolve the difficulty. stract data types: Schema, Relation, Attribute,

RDB is an "open"[3] system. It is imple- Cursor, SortKey, SortList, SortLists, Selection,
mented as a hierarchy of modules that are struc- and Expression. Figure I illustrates the relation-

tured so that they can be easily modified or ships among the various types.

replaced. Furthermore, RDB does not depend on A Schema in RDB describes the tuple format
any operating system services. As a result, it is in terms of the position and type of the Attribute
possible to manipulate ROM or memory-resi- fields. At present, the only field types are text and

numeric. The schema is disjoint from the data

This work is supported by ARO under contract composing a Relation in order to provide options

DAALo3-87-K0090 and by ONR under contract forreal-time systems that are not normally found

N00014-86-K0245. in traditional database systems. For example, it
is possible to define a Relation's content as a file,
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color part cost

Attribute Name "red" 123 6.87 0
Attribute Type "blue" 98 0.45 1
Attribute Tuple Offset "blue" 67 2.03 2

Length in bytes
Additional

Information ATTRIBUTE

SCHEMA "green" 42 9.67 98 <--CURSOR
SORTLISTS

I SortLists List of_

Filter Procs. SortList "black" 15 4.32 473

SELECTION "black" 12 1.88 474

RELATION

Relation < -- Relation Code String
List of SortKeL Filter Procedures

SORTLIST I Operand Stack

I Instruction Pointer
< Attribute Stack Pointer

SORTKEY Sort Order EXPRESSION

Figure 1. The RDB DataBase Model

but is is also possible to define derived relations. bound after RDB is loaded but before a relation
That is, the tuples making up a relation can be is accessed. The procedures to be invoked are
computed as requested or they can be generated specified when a relation is "connected" to the
from a data stream of sensor inputs[5]. Figure I system for /O.
illustrates a relation composed from three attrib- Upcalls give the system the flexibility to im-
utes: color (text), part number (numeric), and plement ROM or memory-resident databases,
cost (numeric). Each Attribute specifies the field derived or computed relations, and relations
name and type as well as its position in the tuple based on data streams. In essence, each relation
and its length in bytes. The file consists of 475

can have a set of access procedures that are tuned
tuples. to meet system performance and predictability

Once a schema has been defined and a relation goals. The system provides several traditional
selected, any number of Cursors can be opened. access methods, which the user is free to modify
A cursor identifies a tuple in a relation. Cursors or to augment.
are used to "mark" the positions at which I/O p- The SortKey is a central data structure in most
erations are to occur in a database. In RDB, the database implementations. It defines the order
actual I/O is performed using upcalls. An upcall relation to be used for an attribute when it is
is an invocation of a procedure variable that is accessed. For example, the "part number" attrib-
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ute in Figure I is sorted in descending numeric AswithseveralothercomponentsofRDB,the
order. Expression module uses an upcall procedure to

bind the interpretatation of the "e" operator (load
A SortList identifies a relation and a list of sorttypically provides an Expres-

keys. The keys represent the projection of the enta preure tpic wll retur attre
relation over which a particular operator is to be sion with a procedure that will retr attributeapplied. If an attribute is referenced through a values when presented with the arguments to
aplied.farn, athibe p rojetionced tromeugs a"load external". However, the Expression mod-
secondary index, the projection can sometimes ule does not know that it is being used by a
be loaded by referring to the index rather than daoestei
reading the tuples of the original relation. For a tabase system
real-time system, the update costs associated As a result, the user of RDB is free to generate
with a secondary index must be compared with its the operands of an expression in a manner that is
efficiency advantages for query processing. application dependent. For example, a tradi-

A SortLists is a list of Sortlist elements, where tional database system would lock out updates to

each SortList is itself a list of SortKeys. The arelationwhileaquerywasinprogress. Locking
can result in priority inversion which is an anath-

SortLists data type represents the list of projec- ema in real-time systems.
tions of relations that participate in multi-relation
operations, such as a join. With RDB, the selection filters and expres-

Ile join operation is implemented by selec- sion processing can be specified such that "com-
t ed on oerio e pensation" is possible. That is, the updates are

tion based on onre o e expressions. A Selec- made to the relation and are simultaneously
tion data structure contains the input SortLists factored into the query so that neither the query

(relations and keys) as well as the upcall proce-

dure variables that are used to filter the tuples n process nor the update process are delayed. In a

the input relations. Filtering can be applied similar fashion, if records are deleted, the effect

during selection either when each tuple of a may be "subtracted" from a query in progress.
relationisinputorwhenonetupleineachrelation 3.0 An RDB Example
has been input.

The following example illustrates the use of
Tuple filtering can be combined with expres- RDB and the Phoenix real-time operating sys-

sion filtering to achieve results that are not pos- tem, which is also part of StarLite, to implement
sible in a traditional database system. For ex- a cyclic process that prints a "parts" report once
ample, any tuple filter has the ability to terminate every hour starting at a particular hour.
selection. As a result, a query that cannot be
completed by its original deadline can return a Phoenix provides an operator that transforms
partial, or less accurate result, and still meet its a procedure into a lightweight thread. Other
timing constraints. operators allow a thread to set or change its

priority and to delay until a selected time has
The Expression data type is implemented in a rrived. Even though a delay operator for a

fashion that makes it orthogonal to the rest of the relative amount of time has the same expressive
database kernel. It operates on code strings such power, we have found that using an absolute time
as "eOOOO sO4blue =", which compares field zero specification results in programs that are more
in relation zero to the string "blue". If they are likely to perform as the user intended. This is
equal, the top of the operand stack is set to the particularly true for very fine-grained timing
Boolean value TRUE. control operations.

PROCEDURE reponGenerator(initHr:CARDINAL);
BEGIN
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SetPriority(SelfO, 7); ments (procedure "f') to create an expression is
LOOP an upcall procedure that converts attributes in the
AtScon2d.At(initH r60); input tuples into expression operands. Figure 4EF initI-r =24 THEN iWtHr := 1;

ELSE initHr:= initHr+l; presents an outline of "f" and "printr".
ENt PROCEDURE f(relation, atzr.CARDINAL
ErNDo; arg:ADDRESS; VAR (*out*) o:Operand);END reorteneratr ( set Operand to field "aur" in "relation" )VAR s : Selection;

Figure 2. A Cyclic Report Generator pT: pTuple;
pSK : pSontKey;

BEGIN
PROCEDURE printO; s :=arg; (* remembered by Expression *)

VAR r: Relation; pSK := RGetSKey(s, relation, attr, pT (*out*));
s: SortList; o.pT:= pT;
input: SortLists; o.offset:= pSK^.offset;
sel : Selection; o.length := pSKA.length;
e: Expression; END fi;

BEGIN
r := RFind ("partsFile"); PROCEDURE printr(s:Selection; arg.ADDRESS);
ROpenSort(r, s); (* filter items to be printed in the report )
RAddKey(s, "cost", "ascending"); VAR e : Expression;
RAddKey(s, "color", ""); pT: pTuple;
ROpenSortLists(input); pO: pOperand;
RAddSortList(input, s); BEGIN
sel := ROpenSelect(inpu. e, FIONULL, printr); e := arg; (* remembered during selection *)
RInterpret.ROpen(e, "eOOOO sO4blue =", f, sel); pO := RInterpret.Evaluate(e);
RSelect(sel); IF NOT pOA.b THEN RETURN; END;
RInterpret.Close(e); ( FOR EACH SonList in s DO
RCloseSelect(sel); pT := RGetSBuf(s, i);
RCloseSortLists(input); Write the selected awibures in pT^

END print; )

InOuLWriteLn; ( terminate output line )
Figure 3. Initiate Record Selection END print-,

Figure 4. Upcal1 Procedures
In Figure 3, the "print" procedure associates a

Relation variable with the database file and Whenonetuplehasbeenreadforeachrelation
schema. Next, the SortLists is constructed to selected as input, the "printr" procedure is in-
describe the projections of the inputrelations that yoked. This procedure in turn evaluates an
are to be printed (in this case just one relation). expression to select the tuples to be printed in the
Notice that the "cost" and "color" keys are per- report.
muted from the storage order. In general, a
SortList can permute the keys for both the input Whenever the expression evaluator encoun-

* and output relations. ters the "Load External", "e" operator, it per-
forms an upcall to the "f' procedure that was

After the SortLists is initialized, the Selection passed as an argument to ROpen to create an Ex-
and Expression data structures are initialized. pression variable. One of the arguments to "f' is
One of the arguments used to create the "sel" te address of an operand descriptor. It is the
variable is the upcall procedure "printr" that ~edure's responsibility to map the relation and

* actually produces the report. One of the argu- atubute indices to a SortKey. The SonKey is
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then used to retrieve an attribute value, which is References
passed back to the evaluator as an operand. [1] Cook, R.P., StarLite, A Visual Simulation

When the evaluator completes, it returns an Package for Software Prototyping, Second
operand descriptor for the value on the top of the ACM SIGSOFT/SIGPLAN Symposium
operand stack. For the "printr" procedure, the on Practical Software Development En.
result is a Boolean value. If it is true, the fields vironments, (Dec. 1986) 102-110, also
are printed in the report. If it is false, the fields SIGPLAN Notices 22, 1(Jan. 1987).
are ignored and selection continues. [2] Betz, D. and D.N. Smith, SDB - A Simple

RDB implements a number of very flexible Database System, from documentation
options for expression evaluation that space does provided by Pat Watson at IBM Manassas
not permit us to describe. For real-time systems, (Nov. 1988).
the two most important are expression preemp- [3] Lapson, B.W. and R.F. Sproull, An Open
tion and contextual reevaluation. Operating System for a Single-User Ma-

In the former, any expression can be chine, Proc. of the 7th Symposium on
preempted at any time by more critical expres- Operating System Principles, (Dec.
sions or other system actions. Using contextual 1979) 98-105.
reevaluation, it is possible for a query to modify [4] Clark, D., The Structuring of Systems
its expression while it is being evaluated toreturn Using Upcalls, Proc. of the 10th Sympo-
a less accurate result in order to meet timing sium on Operating System Principles,
constraints. (Dec. 1985) 171-180.

4.0 Summary [5] Snodgrass, R., A Relational Approach to

0 The RDB database kernel is intended for use Monitoring Complex Systems, ACM
in stand-alone applications that have "hard" tim- Transactions on Computer Systems 6,
ing requirements. It is an "open" system in that 2(May 1988) 157-196.
the user can manipulate interfaces not normally
available in traditional database systems to

* 1"tune" performance to application requirements.
The use of upcalls also adds great flexibility to
both selection and expression processing op-
tions.

0 RDB does not currently support transactions,
locking, or recovery. It can, however, operate on
either local relations or remote files by using
RPC. We are implementing additional function-
ality as part of a layered design for database
operations. The layers are implemented so that
the end-user can add or subtract features to meet
the performance or timing requirements of
embedded systems.

0
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